



T.W. Buster, MS; J.M. Burnfield, PT, PhD; S.L. Irons, PT, DPT, CCS; C.A. Nelson, PhD; L.H. Trejo, BS; and T. J. Leutzinger



Movement and Neurosciences Center, Madonna Rehabilitation Hospital, Lincoln, NE, USA

#### Introduction

Motor-assisted elliptical machines are used to address walking and fitness deficits in adults<sup>1</sup> but the elliptical's motor-assisted adjustable stride length is too long for children. To overcome this limitation, a modified crank system was developed to shorten step length and height to more emulate children's closely younger movement patterns.<sup>2</sup>

# Methods (Cont.)

#### Procedures

Participants walked at their SSF speed and trained on the motor-assisted elliptical with two levels of motor assistance.

# Results

Figure 2. CMC comparison between hip, knee, ankle and thigh.



## Purpose

To compare children's lower extremity joint kinematics and muscle activation patterns while walking at their self-selected fast pace (SSF) and while training at their SSF speed on the modified motor-assisted elliptical with and without motor assistance.

Hypotheses

•While training at a fast speed on the device sagittal plane joint kinematics at the hip, knee and ankle would emulate those occurring 1) Motor provided active assistance to maintain self-selected fast speed (AAF) and

2) Participants overrode the motor's assistance to maintain self-selected fast speed (AAF+)

#### **Data Analysis:**

- Footswitches (SSF) and foot pedal (AAF, AAF+) data defined cycle phasing
- A minimum of 10 cycles were analyzed for each participant and condition
- Sagittal plane joint angles calculated for thigh, hip (thigh relative to pelvis), knee, and ankle
- EMG data filtered, rectified and integrated
- Peak and mean activity normalized to maximum recorded and expressed as % MVC

Children's thigh, hip, and knee motion patterns during AAF and AAF+ speed did emulate SSF. However, the ankle differed notably, suggesting a need for additional refinements to the prototype pediatric device. Reduced muscle demands during AAF and AAF+ compared to SSF suggest the device could be used to help children with muscle weakness and control challenges repetitively practice fast gait-like movements.

during fast gait.

device's motor-assistance •The would decrease muscle demands compared to fast gait, but muscle demands could be increased by having the participant override the motor.

# Methods

### Subjects:

• Twenty children (ages 3-12) without disabilities

## Instrumentation

- Motor-assisted elliptical (Madonna ICARE) by Sports Art E872MA-modified)
- Dominant lower extremity 3D kinematics (Qualisys 12-camera; 120 Hz)
- Surface EMG (Delsys, Bagnoli-16;1,200Hz) • Footswitch (B&L Engineering;1,200 Hz)

• Duration expressed as percentage of gait cycle (% Movement Cycle [MC])

# **Statistical Analysis**

- Coefficient of multiple correlations (CMCs) evaluated similarities in motion profiles between SSF gait and AAF and AAF+ for hip, thigh, knee, and ankle.
- Separate 3 X 1 analyses of variance with repeated measures identified differences between SSF, AAF and AAF+ for each muscle's activity

# Acknowledgements

The current work is funded by a grant funded through the National Institute on Disability, Independent Living and Rehabilitation Research (90IF0060-01-00). However, the contents do not necessarily represent the policy of the Department of Education, and endorsement by the federal government should not be assumed.

| able 1. Electromyography recorded during SSF, AAF and AAF+ |                 |         |                  |         |                              |
|------------------------------------------------------------|-----------------|---------|------------------|---------|------------------------------|
| Muscle                                                     | EMG Variable    | SSF     | AAF <sup>+</sup> | AAF     | Main Effect<br>(p < 0.001)   |
| Gluteus<br>Maximus                                         | Peak (% MVC)    | 47 (20) | 34 (9)           | 14 (7)  | SSF > AAF <sup>+</sup> > AAF |
|                                                            | Mean (% MVC)    | 23 (9)  | 16 (4)           | 9 (2)   | SSF > AAF <sup>+</sup> > AAF |
|                                                            | Duration (% MC) | 51 (17) | 43 (8)           | 19 (8)  | SSF > AAF <sup>+</sup> > AAF |
| Vastus<br>Lateralis                                        | Peak (% MVC)    | 58 (20) | 41 (8)           | 26 (9)  | SSF > AAF <sup>+</sup> > AAF |
|                                                            | Mean (% MVC)    | 25 (8)  | 19 (3)           | 13 (4)  | SSF > AAF <sup>+</sup> > AAF |
|                                                            | Duration (% MC) | 67 (17) | 66 (20)          | 63 (22) | N.S.                         |
| Medial<br>Gastrocnemius                                    | Peak (% MVC)    | 72 (8)  | 21 (10)          | 19 (9)  | SSF > AAF <sup>+</sup> > AAF |
|                                                            | Mean (% MVC)    | 34 (6)  | 13 (3)           | 12 (4)  | SSF > AAF <sup>+</sup> > AAF |
|                                                            | Duration (% MC) | 51 (15) | 24 (22)          | 19 (11) | SSF > AAF <sup>+</sup> > AAF |
| Tibialis<br>Anterior                                       | Peak (% MVC)    | 72 (18) | 41 (11)          | 19 (8)  | SSF > AAF <sup>+</sup> > AAF |
|                                                            | Mean (% MVC)    | 34 (10) | 20 (6)           | 12 (4)  | SSF > AAF <sup>+</sup> > AAF |
|                                                            | Duration (% MC) | 80 (17) | 53 (17)          | 25 (11) | SSF > AAF <sup>+</sup> > AAF |

Figure 1: Example of unmodified motorassisted elliptical used in testing.



#### References

1. Irons SL, Brusola GA, Buster TW, Burnfield JM (2015). Novel motor-assisted elliptical training intervention improves Six-Minute Walk Test and oxygen cost for an Individual with Progressive Supranuclear Palsy. Cardiopulmonary Physical Therapy Journal, 26: 36-41.

2. Nelson CA, Stolle CJ, Burnfield JM, Buster TW (2015). Modification of the Intelligently Controlled Assistive Rehabilitation Elliptical (ICARE) system for pediatric therapy. Published online, ASME Journal of Medical Devices. DOI: 10.1115/1.4030276.

#### **Disclosure Statement**

JM Burnfield, TW Buster and CA Nelson are the inventors of the patented motor-assisted elliptical technology. The technology has been licensed and the inventors receive royalties.